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Accompanyi ng Sta tement

Given some autonomous evolution equation set in a l3anach

s~~ico 4, our present concern lies in setting up a correspond-

inq dyn amical system on a metr ic space ~l C4  and then apply-

i:~j the Liapunov approach to obtain qualitative information

about  the behavior of motions . Specifically ,  the results pre-

sented here are related to the following areas of difficulty in

application :

a~ setting up nonlinear dynamical systems that are

not necessarily quasicontractive (Theorem 2.2i

b) locating positive invariant sets , with  poss ib ly

empty inter ior , by using a lower semicontinuous

Liapunov function V (Proposition 3.3),

c) estimating the derivative V along motions for

a a lowe r semicont inuous funct ion V (Theorem 3 . 4 ) ,

d) using 1.s.c. Liapunov functions to assure pre-

compactness of positive orbits (Theorem 3.4 with

[roposition 3.5) ,

e) using l.s.c. Lipaunov functions with the Invariance

Pr incip le (Theorem 3 . 6 ) .

L • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • ~~~~~~~~~~~ •~~~~~~~
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SOME RESULTS ON LIAPUNOV FUNCTIONS

AND GENERATE: DYNAMICAL SYSTEMS

J . A.  Walker

ABS T RACT

This paper presents several results pertaining to the use

o~ lower semicontinuous Liapunov functions in the analysis of

au~onc)mc-:s abstract evolution equations . Such functions can be

w~~ :u1 i•~ setting up a nonlinear dynamical system that need not

s~~:i sfy :ny exponential estimate , as wel l  as in loca ting posi tive

in~:triant sets of the resulting dynamical system . Other resul ts

concern the computation of the derivative of a lower semicontin-

uous Liapunov function , the use of such a function to assure pre—

cor n~ ac tness of posi t ive o rb i t s , and a version of the Invariance

Prin c i ple that is valid for lower semicontinuous Liapunov func-

ti• :is . 



1. Introduction

Given some autonomous evolution equation set in a F3anach

~~ace A, our present concern lies in setting up a correspond—

i:lg dynamical system on a metric space ~~~~~ and then apply-

ing the Liapunov approach to obtain qualitative information

about the behavior of motions . Specifically , the results pre-

sented here are related to the following areas of difficulty in

aoplications:

a) se t t ing  up non l inea r  dynamical sys tems that are

not necessarily quasicontractive (Theorem 2.2),

b) locating positive invariant sets, with possibly

empty in ter ior , by us ing a lower semicon tinuous

Liapunov f u n c t i o n  V (Proposi t ion  3 . 3 ) ,

c) estimating the derivative V along motions for

a lower sernicontinuous function V (Theorem 3.4),

d) using 1.s.c. Liapunov functions to assure pro-

compactness of positive orbits (Theorem 3.4 with

P ropos i t io n 3 . 5 ),

e) using l.s.c. Liapunov functions with the Invariance

Principle (Theorem 3.6).

We take this opportunity to define much of our notation

~~~ terminology . The symbols ~ and denote the real l ine

____
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(- -
,~~~~~ ) and nonnegat ive  real l ine [0 ,c.~) , respect ively, wh ile

~~~
‘ represents the extended real line [-~~,~~

} wi th  ~ con-

s Lder ed as points , —~ < ~ ~- for every ~ 
- . -

D~~finition 1.l: A mapp ing u :~/ x -~ *~, ~ a metr ic  space , is

a dy~iamical ~ystem on !~l if the family 
~
u(t ,.)}

~~.o 
is a C0-

s:•~iigroup of continuous operators on £~~; equivalently, if

u ( O ,x) = x , u(t ,u( r ,x) = u(t+T ,x), u ( t , - ): ~~~ ~ is cont inuous ,

anti u (~~,x):~~~ ~ ~~ is continuous (r ight-continuous at t = 0)

fo r all t ,~ ~ {
~, x E

~s every dynamical system is equivalent to a C0-semigroup

of continuous operators , the theory of C 0—semigroups provides a

:~e~ ns of relatino autonomous abstract evolution equations with

~~~ a~~ic~ l systems ; for linear dynamical systems , the complete

re1a~ ionship is defined by the Hille-Phillips—Yosida Theorem [10).

~
‘or nonlinear C0-seniigroups , the connection with evolution equa-

tions 1.5 l ess well established [4] ; most available results are

restrict eLi to the “quasicontractive” case [ 4 ] ,  a restriction that

is often but not always met , even when ~-l = ~~~~~~~ In Theorem 2.2

we describe a means of relaxing this restriction by determining

a class of positive invariant sets in the process of setting up

t)c dynamical system .

Dc J i n i t ion_1.2: For u a dynamical system on a metric space ~ 
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and x E ~~~~~~~, the mapping u(~~,x ) :~~ ?~ -~ .“/ is the motion

originating at x, the set y ( x )  = 

~~o 
u ( t ,x) is the positive

orbit of the motion , and ~ (x) = 
T>O 

(Cl
t
t
~T 

u(t,x )) is the

~)ossibly empty ) positive limit set of the motion ; equivalently ,

v I P ( x )  if there exists a sequence {tn}f l l 2 
such tha t

-~~ •‘ and u (t~~,x) 
-

~ 
y as n -~~ ~~~~. A set ‘ C ~~/ is positive

invar iant under u if x E - / implies tha t ~ (x ) C l  ; 2 is

invariant under u if there exists a mapping v: >~ J

such that  v ( 0 ,x) = x an d v ( t+s ,x) = u(t,v(s ,>:)) for all

:~: E  I ,  t I  ~ , 5 €  ~~~~~~

It is apparen t  tha t  every i n v a r i a n t  set is pos i t ive  i n v a r i a n t ,

and we ri~~tO tha t  the closure of a positive invariant set is it-

self  ~c~~i t ive  i n v a r i a n t .  The posi t ive  l imi t  sot Q ( x )  is direct-

l~ r~~lat ~~d to the asympto t ic  behavior  of the mot ion  u ( , x )  as

t if  -
• ( x )  is precompact .  The we l l  known Inva r i ance  P r i n —

c-~t •le j. 5 , 11, ~~4 ]  provides a very u s e f u l  means of l oca t ing  x )

a s u i t a b l e  Liapunov f u n c t i o n  is a v a i l a b l e .

D~~finition l.3: Let u be a dynamica l  sys tem on a m e t r i c  space

‘1, ar id let V:~~J --~~~ be lower semicont inuous. V is a l . s . c .

Liapunov funct ion for  u on a subset ~‘ if V ( x )  < 0 for  every

x ~ , whe re V: ’/ -~ ~~
‘ is d e f i n e d  by

V ( x )  u r n  in f  ~~( V ( u ( t , x ) )  - V ( x ) ] if V ( x )  < 
~~~,

t ~~0

V ( > : ) 0 i f  V ( x ) =~~~~~’ , V ( x ) _ 1  if  V ( > : ) —~~~.
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In applicat ions, the computation of V of ten  poses

severe d i f f i c u l t i e s, and few general results  are known [2 2 , 2 3 ] .

Theorem 3 . 4  provides a very simple and unres t r ic ted  means of

ob ta in ing  a lower bound for  -V.

Liapunov functions are usually defined to be continuous ,

and continuity of V is essential in most versions of the

Invariance Princip le [5 , 11, 14]; however , with Dafermos [ 6] ,

we believe that l.s.c. Liapunov functions may be useful in es-

tablishing precompactness of positive orbits in cer tain problems ,

and such functions appear to be useful for other pur poses as

~‘~ll [ 7 ] .  Here we suggest their usefulness in determ ining

~r J s i t ive  i n v a r i a n t  sets wi th  possibly empty i n t e r i o r ;  moreover ,

by modif y i n g  an idea of Ball  [1] ,  we obta in  in Theorem 3 . 6  a

vers ion of the Invar iance Pr inc ip le  that  is val id for  l . s . c .

Liapuriov functions and general dynamical systems , thereby ox-

• t ending an ear l ie r  resul t  of Dafermos [6 , 7 ] .

• •- -~~~~~~~~~~~~ • -~~~~~~~~-~— - - - • - - -  

• 

• - • •  — •
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2. Generated Dynamical Systems

If U: x •~~~~ -~~ ~~ is a l inear dynamical  system , ~~ a

Panach space , it is wel l  known tha t  there  exis ts  a closed

linear and densely defined operator A: (2(A) C ~~~~ ) 
-
~ 

h~ such

that , for every x0 E Y ( A ) ,  the motion u(~~,x0) is the

unique strong solution of the linear evolution equation

~
( t) = Ax ( t )  V t  ~

( 1)

x ( 0 ) = x 0 t- 2(A).

Purthermore , fo r  al l  ~, E (0 ,X 0), some > 0 ,

• A ) -1 and I - XA admits a continuous inverse J \

such that J~~x~~ x as A -
~~ 0 fo r  n=l ,2, . . . , and J ~~/

X -
~ u ( t , x)

~s n ~‘ , uniformly on compact t—i ntervals in ~ , for every

x ~ ~
) [13J . Therefore, it is reasonable to say that u is

‘ enerated ’ through the product formula u(t,x) = u r n  J
t/ f l

X [ 3 ]
n

\L mny analogous results have been obtained for the nonlinear

case as well. Crandall and Liggett [4] have shown that if a

(possibly multivalued) operator A: (A) C ~~~~) 
-~ ~4 , -~~~ a

Pan ach space , is such that ~‘(I—XA) D Cl~~ 9 (A) fo r  all

(0 ,X~~~) and wI - A is accretive (in terms of some equiva-

lent norm ‘e~ 
for some w E ~&, then a dynamical system

~s cje neratec l  on = Cl (~ 9 (A)  by the same product fo rmula  as

in the linear case. Moreover , U :  -~~ X -
~~ ~ is (~~ I I~ _quasi_
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contractive , in the sense that e Wtu (t ,.): 7-~~~
’is l e 0

~~~

tractive for every t E ~~~~~~~~~ It also has been shown that the

mot ion u ( . ,x ):~~i~
+ 

+ ~~~~
‘ provides the (unique) strong solution

of the evolution equation

x(t) E Ax (t) a.e. t E~~

( 2 )

x (0) = x E 9(A),

for every x such that a strong solution does exist. A num-

ber of additional conditions, sufficient for the existence of

ntrong solutions , are also known ; e.g.,  if A is closed and

A is reflexive , or if A is closed and u(~~,x ) is known to

be strongly differentiable a.e. on ~~ [4 ,17] . Although this

is a very powerful result , it refers only to dynamical sys tems

that are -
~~~ ~_quasicontractive , due to the assumed

I e retiveness of wI - A. Every linear dynamical system

is of th is type , but many nonlinear dynamical systems do not

possess the quasicontractive property . It appears that major

improvements on the results of [4,17] must involve relaxation

(probably localization) of the accretiveness condition; for

further discussion of this point , see (15).

In our intended applications , it is only some known evolu-

tion equation that will be explicitly available for computations ,

and therefore we are concerned here with a dynamical system that
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is , in some sense , directly related to a known evolution equa-

tion. We wish to make this idea precise , but we do not want

to restrict our considerations to quasicontractive dynamical

~v~ tens . To this end , we note that both the for egoi ng discussion

and recent results on product formulas [3,15] strongly suggest

that  a dynamical system related to an evolution equation ought

to be expressible as a product formula involving the (known)

operator A appearing in the evolution equation . This conjec-

t~ ro motivates the following definition.

Definition 2.1: Let U: x •~
)-

~~~~~~ be a dynamical system on

a me t r i c  space ~l. Let there exist a family 
~ x~~xE[o \

0 , of continuous operators J \: ~~~~~ such th at

( i ) J~ x -
~ x as X ~~~. 0, n= 1,2,..., fo r every x

(ii) u r n  J~~/
X = u (t,x )  ex ists for  a l l  x EE *~

>
, t ~

converging uniformly on compact t-intervals.

Tben u is said to be generated by a product f o r m u l a .

In app l ica t ions  i t  is usual t h a t  = (I- \A) 1
, where

A:  ( 2 (A)  C ~9 )  -
~ ~ may be m u l t i v a l u e d  wi th  ~ a Banach space ,

D / C1
A

1(A) t and d
2

(x ,y )  H x— y H~ . We shall

then say that “A generates u” on the metric space ~~~~~. As we

n o no t wish to be restricted to the quasicontractive case , we
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do not insist that A satisfy any (uniform)accretiveness con-

dit ion . For example , the following proposition shows that a

Liapunov approach can be combined with the Crandall-Liggett

th eory [ 4 ]  to set up a class of generated dynamic al sys tems

that  may not be (u ni formly ) quas icons t rac t ive  in terms of any

e~ uivalent  norm.

Theorem 2.2: For -4 a Banach space , consider a (possibly

multivalued) A: (9(A) C 4) ÷ 4, a lower semicontinuous V :A~~~~’

with V(x) > -
~~~ for every x ~~~~ , and c~ < ~ such that  the

set ~ = ~x E A IV(x) a} C Cl ,9(A) . Let there exist an equiva—
-t —

lent norm .

~~~ 
and w , e 

~~~~
, > 0 , such t ha t  for  a l l

k E

(1) ~~I-\A ) D

(it) V (x) < V ( x - A y )  fo r  all  x ~~~/ ( A ) , y C Ax , such

that x — \y t~

(iii) l (l+ ;
~~~) 

(x-x )  - 

~
(y-

~~
) H l i x  - x H , fo r a l l

:~: , x ( ~ fl 9(A ) ,  y E- Ax , y C Ax.

T f A is the maximal r e s t ri c t ion  of A to 9(A ) ~~~
‘ fl 9(A),

then A generates a dynamical system u on the (comple te)

metric space ~l Cl~~~9(A ) with d (x,y) E x - y l  I ; more-

over , V is a 1.s.c. Liapunov function for u on ~‘l, the

e s t i m a t e  I I u ( t , x ) — u ( t , x ) I < e~~~l l x  — y l  I~, applies for a l l

x , y ~~
- 1, t C ~~~~~~ , and ~ fl ~l is positive invariant for each < a.
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If , in addition , C1~.9(A) 
->4 = -~~(I—A A) for all suffi—

ciently small x > 0, U Cl 9(A ) = -4 for some -
~ ~ i

’, anda 0
0

suitable H I ~ 
X ( a ) > 0 , and W ( ~~t )  < exist for every

fin ite .~ 
> a

0
, then A generates  a dynamical system on 4,

V is a l . s.c .  Liapunov func t ion  on ~~~, Cl/(Aa) and ‘
~~~ are

~- csitive invariant for each finj.te -~~~, and the es t imate

u ( t , x )  — u ( t , y )  I l~ < eW
~~~

t
I I x  - y~ I~ 

applies fo r  a l l

x ,v ~ Cij•- (A ) t ~~
- 

~~~~~~~ fo r  each f i n i t e  n >

Proof:  By condi t ion ( i i i)  , wI — A~ is II . II — a c c r e t i v e .

Condition ( i i)  implies tha t  x ~ when x E 9(A)  , y Ax ,

~ind x — Xv -
~~~

; hence , by ( i )  ~ (I—~ A )  D ~~~~~ . As V is

lower s e m i c o n tin u o u s , ~ is a closed subset  of C1 4 9( A )

hence , Cl 9(A ) L C ~~( I — X A ) ,  and A meets a l l  conditions
M ~

of Theorem I of [4]. It follows that (I—\A ) has a continuous in—

verse T~ (m ee t i n g  al l  cond i t ions  of ~ e f i n i t i on  2.1) and the pro-

• - • t . —nnuc t  :cImuln u(t ,x) = lim (I — • t )  x leads to a dynamica l

‘~~~L( :n u :  ~~ / -~~ ~ such t h a t  i u ( t , x )  — u ( t , y)  I L, < ~ j i x—y l ‘ a
for all x ,v -I , t ~ ~~ [4]. In order to show that V is a

Liap unov  f u n c t i o n  fo r  u on -~~~
‘
, we note t h a t  ( i i )  imp lies t h a t

V ( J ~~x )  < V ( x )  fo r  x ~ 4~ and , t he re fo re, J~~x ‘2 . As V is

lower semicontinuous , V ( u ( t ,x ) )  < lim inf V ( J ~~/fl
x)  < V ( x )  for

0 and x ~
- ‘i, and we conclude tha t V ( x )  < 0 for  every

1. ~y the same r eason ing ,  we see tha t  ‘~~. ~ ~l is positive

;v a r i ; in t  f o r  each ~ < i..

- 

• -
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F i na l l y , we note that  if Cl
4
1(A) = :4 = •c& ( I — ~~A) for

all s ufficiently small A > 0 , and if sui table  H~ I I , A ( a )  > 0 ,
U 0

( c t ) <~~~~, exist for every finite a > a , some a < 
~~~, then

0 0
the above conclusions hold on Cl ,7 (A ) for each f inite e > 0

0 0

If U Cu /CA ) d~4 then each x e  4 (resp. x ~~9(A) )
o <e< ~~0

is in some C1
4
9(A , ) C

~~U 
(resp. 9(A)) for finite ~ >

hence , the remaining conclusions fol low and the proof is comp lete .

If 9(A ) is dense and V ( x )  - 0 , ‘~ . 0, then Theorem

2.2 anc’~ Theorem I of Crandall and Liggett [ 4 ]  are equivalent;

z~ cenerates a I I~ I l~~_quasicontractive dy n a m i c a l  sys tem on

= ~ On the other hand , if ~ ~~, Theorem 2 2  prov ides

~ con s t r u c t i v e  method for  d e f i n i n g  a r es t r ic t ion  A tha t , by

t > e u r e r i  I of [ 2 ] ,  genera tes  a I H I ~— q ua s i c on t r a c t i v e  dynamica l

s y s t e m  or. I = Cl 4 1(A ) . Howeve r , the last  par t  of Theorem 2 . 2

p r ov i i •; a true extension of Theorem I of [4) if u ( o)  -
~ ~~ as

,; Lh c  r e s u l t i n g  dynamical  sys tem on A need not be ~uniform-

i y) 1u is~ con tractive in terms of any equ iva len t  no rm.  This

u i t u a t i o n  arises , for example , in certain problems in nuclear

~ :i ctor dynamics which motivated this result; the analyses of

112 ,2 1 ] could be considerably simp lified by the use of Theorem 2.2.

There are other uses to which Theorem 2.2 can be put , even

[or generated dynamical systems that are quasicontractive . For

:-:ample , consider the nonlinear partial differential equation 

— ~~=~~~~~~~~ Z•~~S ~~~S,~~ tj fU ~~~~ 
— _____ a __s_ —-
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2
~~ y ( r ~, t )  = -~----~- y ( n , t) + f ’ ( y (~~,t ) ) ,  t > 0 , 0 1,

( 3 )

with boundary and i n i t i a l  data

y(0 ,t)  = 0 y ( l , t )  , t > 0

( 4 )

y ( n , 0) = x 0 (ri ) , 0 < r~ 1.

Here f ’  (~~
) 

~~~~~~ 
f ( ~~) with f :  ~~

‘ -
~~ ~ twice continuously

differentiable and f(0) = 0 , sup f” (r) = m < ~“. This is a

slight generalization of a problem considered in a somewhat

different context in [2].

In order to place ( 3) ,  (4 )  in the form (2 ), let >x denote

the generalized derivative of a function x: [0,1) ÷ -
~~~~, let

denote the space of (equivalence classes of) functions x i L~~
2

having n Lebesgue square integrable derivatives Y.x , i =

and let ‘ ~ denote the space of continuous functions having

ii contir.uous derivatives . In contrast with [2], we choose to

view (3) , (4) in the natural topology of 
0; hence , we consider

(2) with A = 
~~~, where

= 
~ 

° I x ( O )  = 0 = x ( l ) h  I l x i  I~ 
= max I x ( n )  I1

( 0~~fl < l

9 (A )  = {x r j ~~
2 x ~ , ( 5 )

A x ( t )  = ~
2 x (~~ + f ’ ( X (~~ ) ) , 0 < 1, x ~

- __ •_fl rn_.~s•_ -, ---~~~n•,•,_ 
_
,
__ 

—_
-—I-—-- ’-
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It is possible to show that ‘4 (I—XA) = i~ for  all  suf-

ficiently small A > 0 , and that wI—A is accretive for

= rn ; hence , by Theorem I of [ 4 3  ( equ iva l en t l y , by our Theorem

2 . 2  wi t h  V ( x )  0 ) ,  it fol lows tha t  A generates  a quas i—

contractive dynamical system u on ( ;  moreover , Theorem II

of [ 4 ]  implies that u(~~,x )  provides the un ique s t rong solut ion

of (2) for every x E 1(A) such that (2) has a strong solution .

Despite appearances , there is more information to be gained

from Theorem 2.2 if a suitable nontrivial function V is used.

Extending a function used in [ 2 ] ,  we d e f i n e  V : ~
‘ 

~ by

ri 1
V ( x )  = (~i x ( ~~) ) 2d~ - 2 f ( x ( n ) ) d ~~, x E

J O

( 6 )

V ( x ) = - if x C (- , X 
~~

t n [ 2 ) the corresponding dynam ical system was set on

( fl - in the topology induced by the natural norm of 1 in

tha t  con tex t  V was con t inuous . H e r e  our dy n a m i c a l  sys tem u

is described in the topology of ~ 
0 and V: r -

~ ~ is not con-

t i n u o u s ;  however , as w i l l  fo l low f rom P roposit ion 3 . 5  in the

next  s ect ion , V : i~ -
~~ ~f

’ is lower semicontinuous . Apply ing

the m e a n  va lue  theorem to f ’ : -~~~
‘ -

~~~~
-
~~~~ we f i n d  tha t , for  x E 9(A)

und ~ 
- • 0 ,

_____________________________________________
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V (x-\Ax) > V ( x )  + A [ 2 + X ( ~~2 _ 2 m ) ] J  [ Yx ( n ) + f ’ ( x ( ~~) ) ] 2 dn

Given any e > 0 , r < 1, it follows that there exists

A 0 such tha t
0 -

,.1
V ( x -A A X )  > V ( x )  +)\ (1— c :)) [ . 2x ( ) + f  ‘ ( x ( n ) )  ) 2 dn ( 7)

0

for all A , (0 , \ )  , x 9(A) . i’e;~•l y ing Theorem 2 . 2 we now

f i n d  t h a t  V is a 1 .s . c .  L iapun ov  f u n c t i o n  f o r  u on

each set = t x ~ r IV(x ) ~ is positive invariant

and closed for - t -~~~, and  
~ ~ f l / I  is p o s i t i ve  in-

v a r i a n t  and dense (w i t h  emote i n t e r i o r) . h o t i ng  t h a t  V ( x )  =

: or  x ~ r , x ~! #~~
, we see by D e f i n i t i o n  1.3 t h a t  V is a

l . s.c .  L iapunov  f u n c t i o n  for  u on al l  of ‘6 .

From Theorem 2 . 2  we have obta ined the separa te conclusions

L i at  V i s  a Liapunov function on U ~ 
= ‘6 n iI~ and tha t

~ is positive invariant for each u. C -‘
~~~~
; a ct u a l l y,  such con-

c l u s i o n s  are not independent , whether  or not u is known to

be generated , and in the fo l lowing  section we point out this

f act for  genera l dynamical systems . Other results in the follow—

in g Section are needed in order to continue with our example.



14.

3. Lower Semicontinuous Liapunov Functions

The u s e f u l  property of a Liapunov func t ion  V is that ,

un der  r e l a t ive ly  weak conditions , its value can be shown to be

oo:~tncroasing along motions of the dynamical  system; th is

proper ty  leads to many in teres t ing  conclus ions .  In order to

obtain conditions s u f f i c i e n t  to insure that V ( u ( • ,x)) is non—

a nc r e a s i n g ,  we wil l  need the fol lowing simple lemma . (Althou gh

th is resul t  probably is available elsewhere , we have been un-

able to find it; a similar lemma stated in [14] is not true

wi thout  a s trengthened assumption that  we make her e . )

Lemma 3.1: Let f:([O ,LflC~~) 
-
~~ ~ be def ined on [O ,~~) ,

O < “, wi th  f ( 0 )  < ~ and f ( t )  > — ‘  for every t €- [0,d),

and assume tha t

(i) f is left lower semicontinuous on [O , r ) ;  i . e . ,

lim inf f ( t ) > f(t ) for every t C ( 0 , t ~),
t • t 

— 0 0

0

( i i )  th e lower r ight derivative is nonpositive on [0,~ - ); i.e.,
f ( t )— f ( t

D~~f ( t )  lim inf —~~~
--- 0 f o r  every t ~ [0 ,~ ) .

t t t — t  0

o 0

Then f is nonincreasing and differentiable almost everWhere

on compact subintervals of [O , c) ; moreover ,

rt
f ( t ) •

~ 
f ( 0 )  + j D~ f ( s ) d s  Vt  ~ [O , .~ ) .

0

_ _ _ _ _ _  
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Proof : Choos ing some ~ > 0 , d e f i n e f , ( t )  = f ( t )  — r t for

[O ,~~) . Then f is left lower semicontinuous with

f~~( O )  = f ( 0 )  and f (t )  > — ‘ , D~~f (t) < —
~~~~ , for  every

L [O ,~~~) .  We cl aim tha t f ( t )  < f ( 0 ) for every t ~

if not , l e f t  lower semicon t inu i ty  implies the existence of

t [O ,tl ), t
2

t (t  ,f), such that f (t) f(O) for t €  [O ,t1 1 L 1

and f (t) > f(O) for t ~ (t 1, t2) . However , this  leads to

[ho cont radict ion D f ( t ) > 0; we conclude tha t f ( t) f (0)
+~~~. 1 — —

for  every t [O ,~~
) and , as r > 0 was a r b i t r a r y, the same is

t r u e  for  f .  Replac ing  t = 0 with t = (0 ,1) and repeat—

inc t:nis argument , we find that f(t) < f ( y )  for  a l l  t

end al l  [O ,~~) ;  hence , f is n o n i n c r e a s i n g  and f i n i t e- v a l u e d

on [0 ,~~~) .  By a standard result of integration theory (see [ 161,

:;cct ion 34.2) it follows that f is a.e. differentiable on

compact subsets of [O , f 3 ) (w i t h  d e r i v a t i v e  equa l  n . e .  to D~~f ( t ) )

m c i  that

It
f(t) < f ( Q )  + d f(s)ds

— 
J O 

+

‘ r every t [O , L~) . The proof is complete .

The fo l lowing  proposit ion is now obvious .

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
~~~----• - — ----

- -
~~~~~~~~~~ -~~~~~~

-.•
~~~~~~~~~ .--

- -— —_
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Proposition_3.2: Let u: x ~~~~~~~~~ be a dynamical system

on a me t r i c  space ~7, and let V:~~~ ÷~~~ be a l.s.c. Liapunov

f u n c t i on  for  u on a set ~~~~~~~~ If  x ~ ~~~
‘
, V(x )< , and

u (t,x) ~~~
‘ for  all  t ~

- ( O ,~~) , 0 < ~ < -‘ , then V ( u (~ ,x)) is

nonincreasing and differentiable a.e. on compact subintervals

of [O ,~~); moreover,

V (u(t,x)) < V ( x ) + 
j 

“(u(s,x) ) ds Vt [0,1:.)
0

Proof:  As u ( . , x ) :~~t -~*/ is cont inuous  and V: -/ -
~ is

lower semicontinuous , we define f ( t ) = V ( u ( t , x ) )  f o r  t € [0 , i l )

:tnd note that all conclusions follow from Lemma 3~ 1.

From Propos i t ion  3 . 2  it is apparent  that  V ( u ( ~~, x ) )  is

nonincreasing on ~~~~~~ provided tha t  ‘,‘ ( x )  is con ta ined  w i t h i n

a set ~ C -i such that V is a Liapunov function on ~~~ . If

V is not a Liapunov func t ion  on all  of ~~~~~, the problem now is

to ensure that i (x) is contained in some ~ C*l; this is

directly related to the problem of determining positive in-

variant sets . The following proposition is well known for con—

ti r ± uous Liapunov functions ; we prove it here for  the lower semi—

con t inuous  case.



_ _ _ _ _  
_ _ _ _  _ _ _ _

17.

Proposition 3.3: Let u :v~’~ x J(-~ ~ be a dy namical system

on a metr ic space ~~~~~ , and let V:~~ ~~ be a l.s.c. Liapunov

onction for  u on a d i s jo int  component ~~ of the set

t. :‘2 V~ x )  < a} for some a < ~~~~. Then , for  each < e , the

s-2 t ~~~~~ 
= ~~X E~~~~~V ( X )  < ~} is positive invariant and , for every

:< ~~~~~~~, 
V ( u ( , x)) is nonincreas ing and d i f f e r e n t i a b l e  a lmost

everywhere on compact t—intervals; moreover ,

V (x) + J V(u(s ,x))ds Vt e~~
’
~

•0

Pr~ of: In v i e w  of Proposition 3.2 , it  only remains  to be sh own

‘~ is positive invariant. Let us consider  x E .~~~~~~ ,

n o t i n m  that V(x) < ~ and , by the continuity

ci the nap u ( ,:~:), V ( u ( , x) ) is lower semicon t inuous  on

h it h er  u ( t , x )  r emains  in ~ on some f i n i t e  in terva l  [O ,T]

or it does no t .  I f not , the lower s emicon t inu i ty  of V ( u ( . , x ) )

i .n i l i c s  Lhe e x i s t e n ce  of ~ 0 su ch th at V ( u ( t ,x)) ~. fo r

cnl l  t e ~~~~~ ; t h e r e f o r e , we obta in  the contradiction tha t

O V (x) = u r n  inf [V(u(t ,x ) )  - V ( x ) ]  = +

t ~~0

Tmn ce, V ( u ( t , x ) )  
~~
‘ for  t I [0 , T] for  some T > 0;  apply—

in ’_j P ropos i t ion  3 . 2 , we f i n d  tha t  V ( u ( t , x ) )  < V ( x )  ‘:

[o ,T ] .  Repea t ing  th i s  process , we f i n d  tha t  e i ther  u ( t , x )



- - -~~~~~~~~~~~ - - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

18.

remains  in for all t or there  exists posi t ive

such that  V ( u ( t ,x ) )  < ~ for  every t E [O , T ) and

~ (u(~~,x)) > 1. By the lower semicontinuity of V(u(.,x)),

[he l a t t e r  case is impossible , and we have shown 
~~~~ 

to be

ositive invariant . Applying Proposition 3.2, the proof is

c o m r m i e t e .

tft cn there  are severe difficulties involved in computing

~: wno n , as is usually the case in applications , the mapping

a: -~~ - :~~~ is not ex p l i c i t l y  know n [18 , 22 , 2 3 3 .  For a

generated dynamical system , th e f o l l o w i n g  resu l t  provides a

means of obtaining at least a nonnegative lower bound for -V .

iheore:i 3. 4: Let U: -
~~ °( be a genera ted  dynamica l

system on a metric space -~l. Let there exist lower semicontin—

sous functions V :~~ •
~~~~
‘ and U : < -/ - -~~~~

‘
, V(x) > — for

cl, such that

(i~ V(J x) V (x) - ;cu (\ ,J A x) Vx 0) , ~ ~ ( O ,X ) ,

(:~~) 0 U ( 0 ,x) Vx f~

- -, —- —— —- — -—---—— - —‘•-— ~~~~~~~~~~
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where A > 0, a < ~~~ and ~ is a d i sjo in t  component of

~ V(x) < a). Then ~~~~, {x 
~ l v x  < ~} is positive

invariant for every ~ < a and V is a l.s.c. Liapunov

function on with ‘7(x) < —U(O ,x) for every x

Proof: For x Ecl, t C (O , \ ) ,  and n = 1, 2 , . . .,  we see

th at

x )  - V (x)] = Y [V ( J ~~~~
/ 

x )  - V (J ~~~
1 x ) ]

m=l 
U ( ~~ IJ~~/ 

x )

- i n f  {U ( ~~~f J~~
/ 

x )  m= 1 , 2 , .. . ,n 3

- m l  (U(~~,J~~ x) 0 < ~ < t, m=1 ,2 , .  . . n }

where J9 x = x .  Since u is gene ra ted  and V is lower

serniconti n U ous ,

~~[ V ( u ( t , x ) )  - V ( x ) J l im in f  ~~[ V ( J~ / 
x )  - V ( x ) ]

- inf {U(.E,3m
7 

x) IO T < t , m=l , 2 , . . . }
m , I

ni’l it fo l lows  t h a t

- ____
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V ( x )  = u r n  inf ~~[ V ( u ( t , x )  - V ( x ) )
t N. 0

[ fit
< — u r n  sup [in f  { U (

i~
l JT/m 

x) 0 < I t , m=1,2,.. .3 ] .
t ’~-. O  m ,i 

—

Deno t ing  the last  term by — f ( x ) , ~~~~~~~~~ i t  fol lows

that for each ~ > 0 there exists  a sequence {T ,m } —k k ,— l ,2,...

dependi ng on x and e , such tha t  ink is a posi t ive  in teger ,

> ~~ ~k~~~~° as k ~~~, and

T
k 

tmk
f (x) + :‘ u r n  inf U (—,J x)

k -~ - - ‘) k k/Ink

Lf the secuence {mk
}k_1 2 

is bounded , then the lower semi—

continuity of U and the fact t ha t  x :•: as A ~~~~. 0, uniform-

lv in m=1 ,2,.. .,n for  f i n i t e  n , together imply that

f ( x )  + ~ > U ( O ,x). On the other hand , if the sequence

is not bound ed , then there exists a subsequence
r~— l ,2 , .

of ( m k,mk}~~~l 2  such tha t n~ is a

T - n s it i v c  i n t ege r , n ‘“ as p - -a’ , ~ > t > 0, t -
~~ 0 asp p p4- 1 p

o -~~~, and

t n
f ( x )  + £ > lirn inf U (_

~
1i,J

t
P x).

p p/n

‘i’hefl , since 
~~ /n x u(t ,x) as n - “ , u n i f o r m l y  on compact

i-i ntervals , it again follows from the lower semicontinuity of 

~~~,—- — — 
—
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U tha t  f ( x )  + ~ > U ( 0 ..x ) . As x E~2 and c > 0 were

arb i t rary ,  we obtain V(x) < - f ( x )  < — U ( 0 , x )  fo r  every x

We now have \~ (x )  < —U(O ,>:) 0 for every x c-

cherefore , V is a l . s.c .  L iapun ov  f un c t i o n  on ~‘ and the

pos it ive invar iance of ~~~~, ,  :- , follows from Proposition

3, 3. The proof is complete .

Remark :  If a (possibly multivalued) generator A:L/(A)C A) -~ :A

“genera tes u ” in the sense of Sect ion 2, where the Banach

-
~~ C1~~9(A) and = (I—AA) 1

, then condition

(ii is equivalent to

(i) V(x-Av ) - V(x) >

for every x F 1(A) , y F Ax , •\ E (0 , A
0
) , such tha t x — Ay -

Rcr’arn: Since V is lower semicontinuous , each ~~~~~. is closed

for - . , a l t hough possibly empty ; moreover , we note that

~ may be nonempty with empty interior .

As a somewhat trivial application of Theorem 3.2 , let a

dynamical system u: ~i
4- 

<
~~~~ 

-
~~~~~J, ~ a Banach space , be genera ted

by a (possibly mul tivalued) operator A: (9(A) C ~~~) ~~~ such

- - -~~~~~~~~~~~-—— -- —
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that I - A is accretive for some w < 0 and 0 -n ’(A)

Then defining V(x) = I I X _ X
e I with X

e 
such that 0

-junlication of Theorem 3.2 immediately yields \‘ ( :-: )

O f course , as the theory of C 0 -semigroups show s that u must

admit the estimate ju(t ,x) — X
e l 1 < e~~~1 !X ~~~ e l (4 ] ,  this

-stinut ’:’ can be used in Definition 1.2 to achieve the same

conclusion.

As a more interesting application , consider the examp le

wn i’:’h was begun in Section 2. With ( , A , and V de f i ned by

(3) and (6), we set 1 = (- in Theorem 3.4 and note from (7)

t ha t the f u nct ion  U : ~~ -~ ~~~, given by

-~

U (A , x) = ~ ( i -~~) f [ 3~~x (  r )  + f1 (x  (
~i)) 3 

L
dn , x ~

( 8 )

= if x r , x •/

s-~~Lis1i~~ s con d i t i o n s (U and ( i i )  of Th eorem 3 .2 for  0 < A < A0 ( c ) .

~;m shall show later that both U: -~ ~ and V: ( -
~~

arc lower semicontinuous ; hence , r eca l l ing  tha t E > 0 can be

chose n a rbi tr a r i l y  small , Theorem 3.4 implies that V(x) < — W (x)

io r all x 
~ u = , where

e
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2 2 2
\~ (x) =~~~~, [ ‘  x ( ~~) + f ’ x ( ~~) )  dn, x E ~ ‘~~

(9 )

h ( x )  = - o  jf x F ? , >:

The remaining conclusions of Theorem 3.4 were previously

obtained in Section 2 fo r  th is examp le . A new conclusion

con be reached by noting the result V(r) - 
~~(x )  fo r

F ~ fl and applying Proposition 3.3 , f rom wh ich  it fo l lows

that u(t ,x) cannot remain in ~ fl (# ~~ 
— I ~~) on any open

tine interval in ~~~~~~~ We shall return to this examole later.

Theorem 3.4 provides  both an estima te for  V and a f amily

~~ L. of nositive invariant sets. ~ie note that if some

~ < ~, is bounded (or p r e c o m p a ct ) ,  then the positive orbit

( :•: ) is bounded (or precompact)  fo r  every x e ~~~; this suggests

cha possibility of using Theorem 3.4 to assure precompactness

ot positive orbits , an essen tial requi remen t for  use f u l  app lica-

tion of the Invariance Princi ple [8,11 ,18 ,20]. Note [bat if

there exists a smaller metric space ~ C ~
/ such that co n e

i.,  is a ~~-bcunded subset of ~/ and the injection

q’ is compact , then ~~~~ , is h~-precompact and ~ (x) is

I rev’)mlr:act for every x F . This idea is related to the pre-

vious approaches of h ale [11] and Slemrod [18) for assuring pre—

-:or pac2tness of positive orbi ts , but  i t is much simp l e r  in tha t

w e do not make the a s sumpt ion  of [11] and [18] t ha t  u , res—

trio fe -I to ‘
~~ ‘ ~~ is also a dynamical system on ~~‘. This ad-

_____ -- - - - - - - - - - .: ~t - - .-~
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vantage may be partially offset in aoplications by the practical

problem of assuring that V: ¼~ - -  - -~~
‘ is lower semicont inuous  on

1 [19].

;c’ o now provide a sufficient condition for lower semicon-

tinuity that is related to our comments on orbital precompactness.

We note that  if V: ~~~ 
-
~~ 

-~~
‘ meets the condi t ions  of Theorem 3 . 4

as well  as those of Proposition 3 .5 , wi th  d
1

(x , y)  I x-y~
then ~~~ /~-~ is ±~—precompact .

Propos ition 3 .5 :  Let F: ( 1( F )  C A )  -~~ ‘ , A~ a Banach space ,

and lot ‘ denote the set ~x F 9(F) F(x) < a7c , m F

Lot A~ be a r e f l e x i v e  Banach space such t ha t

(i) 
~~ 
C -

~~~ 
and the i n j ec t ion  -

~~l ~~ 
is compact ,

( i i )  f o r  every ( fi n i t e)  a I ~~~~, J~ C and / is

h oL~h ~r
bou

~~
ed and ~41-weakly closed .

ihen F: (1(F) C 
~~~~~~~~~~ 

~~
‘ is lower—sermicon t inuous  on 1(F) and

is precompact in for  every e ‘-~~
‘
. If  1(F) is closed

i.n 
~~ 

, is compact in

P r o o f :  Suppose that  F is not  lower semicont inuous; then there

e x i s t s  x ~~
- 1(F) , e > 0 , and a sequence {X ~~}~~~1 2  C ~i f t)

such that x~ x
0 

as n -~ and u r n  inf F (x) = .‘ ( F ( x )  - 2 ,

i- (x
0
) ~ ° . By choosing a subsequence , if necessary , we may 
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t s s u oe  that  F ( x ) < 5 + c for every n; hence ,

~ t n=1 2 C - “
~~÷~~ 

C • Since -~~~~~~ is ref lexive  and

is t 1 -bounded , we may assume (by choosing ano the r  sui s equence ,

i~ :iac ’ -;sar ~’) t ha t  ~X~ }~~~1 2  is also 11— w e a k i ~ ’ convergen t

to  sone A [ 9 ) ;  in fac t , y t- / since / is‘0 1 0 ~+5

ihlv closed.  As the i i ij e c t ion  
~~ 

is a compact l i n e a r

cne~ atc- r , i t  maps 
~~ 

— w e a k l y  convergent  sequences i n t o

- : ; t ~~c n c I L y  convergent sequences [ 9 ] ;  hence , x = y

thi s contradic ts our assumption tha t  x0 ~ •
~~~+2 and implies

tha t F: ( 9 ( F )  C ~~~~~~ ) 
-
~~ 

- ~ is lower semicon t inuous .

As ‘ is -~1—bounded and the injection ~~ - is

~ is :~~~_pr ecomp act.  If L. - ’ ( F )  is closed in ~ 9 ,

lower sc’micont inui ty  of F impl ies  tha t  is closed in

hence , / is compact and the proof is complete.

h e ’ a r k :  As A1 is loca l ly  convex , a closed convex set in

m u s t  bc w e a k l y  closed [ 9 ] ;  hence , we can replace ( i i )  by the

3 i n ul or  but  more r es t r ic t ive  condi t ion

( i i )  ‘ for every (finite) a ‘-~~~
‘
, -‘~~ is a convex

~ 1—b ounded and ~ 1-closed subset of

A s an appl ica t ion of Proposi t ion 3.5 , consider the func t ion

IIrli ~__ • - -  — ~~-=~~~~~~~~ -~~
—-—--—-— — — - —— - - • 

~~~~~~~~~~~~~~~~~~~~~
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V of ( 6 ) def ined on the Banach space ~~~

‘ defined by (5). We

note that V = F +11 , where H: - i” -~ ~~
‘ is conti nuous and F: ~

is defined by

uF (x) = I (3x (‘i ) ) ‘ dh , r fl 1
2JO

F ( x )  = if x ~~~

‘
, x ‘/

Defining t = {x e (~~F (x) ~~~~~~~ ~ ~~~, and defining a filbert

space ~~ to be the set ~ fl equipped w i t h  the n a t u r a l

norm of fr~~, we see tha t  the i n j e c t i o n  
~~ 

-~ r is compact ,

A i~ reflexive , and / is a closed convex bounded subset  of

A f o r  every a 04’• Hence , by Propos i t ion  3 .5  w i th  condi t ion

(i i ) ‘ , F: f• -~ ~ is lower sem icon tinuous and 1 is compact

in r It follows that , as claimed , V: ( -
~~ also is lower

s e m i c o n tin u ou s . Moreover , if f :  -
~~~~ 

-
~~ 

y is such tha t  there

ex i s t  ~,f ~ ~ for which ~x 
‘
~‘ j V(x) < ~} C ~x ~ ~~I F(x) <

t h e n ~~ C i’ and ~ is compact ; consequently , the positive

o r b it  ( x )  is precompact  for  every x

In a s imi la r  manner  we can show tha t  W : ~r’ -
~ ~~~, given

by ( 9 ) ,  is lower sern icont inuous. We note that W = Fli , where

~: - ‘r is continuous and F: (, -~ 
~ is d e f i n e d  by

.~~~-.. ~~~~-w~~~~—— — - - —- —- -
~~~-
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4
F(x) = 2J (32x (~~) ) 2

d~ , x I Y fl

0 —

P ( x )  = if x C ?‘ , x

Defining a filbert space ~~~~~ to be the set ~ equi pped

w it h  the na tura l  norm of , the argument  made above again

aoplies , and F: i~
’ -

~~ 
-
~~~ is lower sem icontin uous ; it follows

that W : ?~ -~ -~~
‘ is lower semicontinuous . Moreover , since

U (l—c)W and c < 1, it fol lows that U : x -~~

g iven by ( 8 )  is also lower semicont inuous, as was previously

claimed .

In  combinat ion with a resul t  such as Proposition 3.5 ,

Theorem 3 .3  provides a means of a s su ring  precompactness of

posi t ive orbits ; hence , the Invariance Principle is made avail-

abl e for  the study of posit ive l imi t  sets and asymptotic be-

havior of motions . The usual form of the Invariance Principle

is given by (a) of Theorem 3.6 below , and its proof is wel l

known [5 ,11 ,14]. This form of the Invariance Principle requires

a cont inuous  Liapunov func t ion , which seems un f o r t u n a t e  since

a l . s . c .  Liapunov func t ion , capable of showing precompactness

of pos i t ive  orbits , w i l l  not be con tinuous unless ~ is a com-

pact metric space; hence , a second (continuous ) Liapunov function

must be found , and Liapunov functions often are very difficult

to find. This disadvantage led Dafermos [6,71 to an extension

of the Invariance Principle which employs finite-valued 1.s.c.

- -~~~~~~
-
~-~~-~~ ~~A
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Liapunov func t ions ; un fo r tuna te ly, his extension applies to only

a very special class of dynamical systems , where in  every motion

Is known to be stable a—pr io r i .  A more general ly  u s e f u l  exten-

sion SCO~~S to be provided by our resu l t  (b)  of Theorem 3 .6  below .

Related to an idea used by Ball [1) in yet another  exte nsion of

the Invariance Principle , result (b) of Theorem 3.6 extends the

Invariance Principle to l.s.c. Liapunov functions and general

dynamical systems . Rather than requiring knowledge of ‘~‘

as in ( a )  , result (b) requires only an explicitly known lower

semicontinuous and nonnegative lower bound for -V, such as the

estimate U (O ,x) provided by Theorem 3.4.

Theorem 3.6: Let u :-~~ x ‘f e/ be a dynamica l  system on a

metr ic  space 1, and let V :~~~-~~-~ be a l.s.c. Liapunov function

fo r u on a set ~ C~~ such tha t V (x)  ~
- -W (x) < 0 for

oil x l  ~~~~, where W:(~~C~J) ~ is lower semicontinuous on

-~~~ C1
1~~ 

and V ( y )  > --° for  all  y ~~~~. If i(x) C~~~~~~~~, then

~~ (:- .) C ~~~~~~~~
, where is the largest positive invariant subset

of

(a) = {z E ~~ V(z) 
= O} if V is continuous

( i n  fac t , h (x) C1’~ fl V 1(~~) for some ~ €

or

(b )  € - 

~‘jW (z) = O }  if V is only lower

semicontinuous .

-— -~~~p- _~~~~~~~~ ofl~~~~~- ~~~~~~~~~~~ 
-— — ~~~~~~~~~~~~
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If , in addi t ion , ~4)’ is complete and y ( x )  is precompact,

then u(t,x) ~~ as t ~~~, where ~E is the largest invariant

subse t of -
~
‘
l 

if V is continuous , or of 12 if V is only

lower semicont inuous.

P r o o f :  It is well known that s2(x) is closed and positive in-

var ian t [11,14] . If ~
?l’ is complete and y(x) is precompact ,

then f~(x )  is nonempty , compact , connected , and invar iant ;

moreover , u ( t , x)  -
~ h(x) as t -

~ ~~~~. Assuming that  y ( x)  C ~~~~,

we have ~ (x ) C Cl ‘~‘(x) C ~~~~. If y ( x )  is not precompact o (x )

may be empty , in which case the theorem is obviously tr ue but

vacuous ; hence , we will assume that - -  (x) is nonempty .

There now are several cases to be cons idered .

If V ( u (t ,x ) )  E for  all  t E ~~~~~~~ , Definition 1.3 im—

plies that W (u(t,x)) 0 on ~~~~; hence , by the lower semi—

cont i n u i t y  and nonnegat iv ity of W , ~.;(z) = 0 for every z ~

ari d r e s u l t  ( b )  appl ies .

If v (0) “ but V(u(t* ,x ) ) < f o r  some t~ > 0,

we may replace x by x~ = u ( t * ,x) and note that h (x *) =

V (x*) -: 
~; hence , the proof of (b ) for this case can oc embedded

in the proof for the following case.

If V(x) < -“ , Proposition 3.2 shows that V(u(~~,x)) :-~~ 
-
~ - ‘i

is non in c roas ing  as wel l  as f i n i t e — v a l u e d  on 1l~
+
. This implies

— -~~~--
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tha t  V ( u ( t ,x ) )  -
~~ ~ as t -

~~ ~~~~, where (3 = m c  V(u(t ,x ) )

* [ 1 6) ;  as C l y ( x )  Cs’, Q(x) is nonempty , and V ( y )  > - - for

• every y c i, ,  lower semico’ntinuity of V imp lies f > — °~~.

If V: -/ -‘- f is continuous , it follows from the definition of

d (x) (Definition 1.2) that V(z) = ~ for every z

furthermore , as ~i (x )  is positive invariant , V(z) = 0 for

every z F s I ( x )  and the well known result (a) follows. On

the other hand , if V is only lower semicontinuous, we note

as in the proof of Proposition 3.2 that V(u(.,x ) ) :~/ 
-
~~ ~~

‘ is

differentiable a.e. and

V ( u ( t , x ) )  — V ( x ) < I ~‘ ( u ( s , x ) ) d s , t
— J O

The refore , considering any sequence 
~
tn }n l 2  C such

tha t t - and u ( t ~~,x) -
~ z C h (x) as n - “ , the uniqueness

of the limit 13 implies that for any T > 0,

O V (u(s-4-t ,x))ds > [V(u(t +T,x)) - V(u (t~~1 x) )] 
- 0 as nn n

As ~J ~s nonnegative and lower semicontinuous , we apply Fa tou ’s

Lemma [16) to obtain

W ( u ( s ,z))ds < I (lim inf W(u(s ,u ( t  ,x))]ds

1T
lim iMf W(u(s+t ,x) ds

— 

~~~~~~~~ 
.‘o n

rT.
— lim V(u(s+t

~~
,x))ds = 0 ~

n- ”-

- d- - 
-

L~. - -  

-
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Therefore , W (u(s,z)) = 0 a.e. s F [0,T ] ,  and the lower semi-

continuity of W now implies that 0 = W(u(0,z)) = W(z); hence,

~ (x ) C ~iz E ~~jW(z) = 0} and the proof of (b) is complete . ~

For an application of Theorem 3 .6  we re tu rn  to the ex-

ample begun in Section 2 , with ~~,A ,V ,W def ined  by ( 5 ) ,  ( 6 ) ,  ( 9 ) .

As V is only lower semicontinuous on ( and W is a lower

bound for -
~~~ only on the (positive invariant) set ~ =

we note that  ~ 
‘~: and

= {x F 
~ ~

2x(n ) + f ’  (x(~~)) = 0 a.e. 
~ F [0,

l]}

= ix CJ (A ) I Ax = 0}

h ence , consists solely of equilibria of the dynamical

system 1: ~ ~~
- -

~~~~~~~
; as equilibri a are invariant, 

~ 
=

-
~~~

‘

~~~~

It fol lows that , for x e f,fli~~, :~
(x) consists solely of

equilibria. If f: ~~ 
-- 

~ is such tha t

~~C{x e ~ n~~1
IJ (~~x~~~~) 2 d~ <

for some(finite) c~~ F -
~~~
‘
, where ~ = {x F ~(jV(x) < a}, then

our earlier results imply that 
~ 

is compact ; hence , y(x) is

precompact for every x € and u(t,x) -
.~~~

‘ fl~~~~~~
) 

(strongly in

) as t -~ ~° , for every x * ‘,. If equilibria are isolated 

~—~- — _------ -——--- - L ~~~, 
- -
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in ~~~~~, it then follows from connectedness of the positive limit

set h ( x )  that f~(x) consists of exactly one equilibrium for

x e ~~~~~. The approach used here might have simplified considerably

the analysis of 12), which was performed (in a different space)

under stronger assumptions on f: ~~~~
‘ -

~ ii’.

We see that result (b) of Theorem 3.6 is not as strong

as result (a). Specifically, if V is not continuous , V may

not be constant on the positive limit set 82(x) of a motion

u ( ,x) ; in fa c t , we may riot even have V zero on h(x) unless

—
~~~ is lower sernicont inuous on -~~~~ . In cont ras t , the extension

provided by Dafermos [6,7) for fin ite-valued l.s.c. Liapunov

functions yields V zero on t (x) without assuming

-V: -i - - to be lower semicont inuous on -~~~

‘
, provided that

all motions of u are known to be stable a-priori; however ,

th i s is a very strong proviso which does not hold in general for

our examp le. t would be extremely difficult to compare our ex-

ter~Sior. wi th that of Ball (Theorems 2.2 and 2 . 3  of [1)), where in

the assumptions on V are of a very different nature; we ask

the reader interested in such a comparison to consult that

pa m-er 1]. Hero we only mention that , in our example , the

f u n c t i o n  V de f ined  by ( 6 )  v iolates  an assumption of both Bal l

[1j and Dafermos [6 ,7), as it is not fini te-valued everywhere on

C-
he emphasize that Theorem 3.6 , like Propositions 3.2 and

3.3 , applies to a general dyn anical system (Definition 1.1);

_ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  
_________________________ 
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snecifically, Theorem 3.6 does not assume the dynamical sys tem

to be generated in the sense of Definition 2.1. At present , it

seems to be an open question as to whether or not all dynamical

systems are generated in the sense of D e f i n i t i o n  2.1.

I wish to thank Professor E. F. Infante of Brown Univer-

s i t y  fo r  h is  interest  and very u s e f u l  suggestions d u r i n g  the

course of this work.
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